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COMMENT 

Dispersion in first passage time for biased diffusion 

G Michel 
Institute of Theoretical Physics, Cologne University, 5000 Koln, West Germany 

Received 24 October 1985 

Abstract. This comment presents Monte Carlo simulations of first passage times for biased 
diffusion on randomly dilute lattices, as a model for hydrodynamic dispersion. The 
calculated distributions show non-monotonic curves and non-monotonic derivatives. Pos- 
sibly there is a simple exponential decay for large times. Fourier transformations demon- 
strate no l/f frequency dependence. 

This comment tries to model the flow through inhomogeneous media. The starting 
point of the following simulations is the so-called ‘ant in the labyrinth’ problem, which 
is well known in percolation theory (Stauffer 1985b). A cubic or triangular lattice is 
occupied with probability p .  Above the percolation threshold p c  we obtain a path of 
occupied positions through the lattice ( pc,cubic = 0.3 117; pc,triangular = 0.5). In this com- 
ment we will discuss lattices with p = 0.8 > p c  and lattice sizes of Lcubic = 1763 and 
Ltriangular = 25602. At the beginning of the simulation we select n occupied positions 
as starting points for ants. To achieve a flux through the lattice it is necessary to install 
a constant bias force BF to the random walkers. Physically BF may be a field, pushing 
the ants in one direction. In the simulations we set BF between 0.6 and 0.8 to obtain 
a rapid flux. This means with probability (1 + 5 ~ ~ ) / 6  the ant selects the field direction 
(x direction) and with probability (1 - B F ) / ~  any other direction for its next attempt 
to move. Biased diffusion has been studied in various ways (Pandey 1984, Seifert and 
Suessenbach 1984, Stauffer 1985a, Barma and Dhar 1983, Bottger and Bryskin 1982). 
If we observe the ants during their walk, we realise that the average time the ants need 
to reach distance r differs. In this way we can calculate so-called first passage time 
distributions (figures 1 and 2). Another possible way to analyse the distributions is to 
calculate Fourier transformations from the following autocorrelation function in the 
stationary case: 

where n ( t )  is the number of ants having reached a distance 3 r after t steps (figures 
3 and 4). 

The Cyber 205 vector computer at Bochum University was used to calculate the 
first passage times. In figures 1 and 2 about 5 million ants walk up to 5000 time steps 
to reach a given distance in x direction. In these cases cubic lattices and BF = 0.8 were 
used. Figure 1 shows the logarithm n ( t )  of ants for distance 10 against time steps; 
figure 2 shows the distribution for distance r = 90 ( r  = lattice position difference in the 
x direction). Both figures give very asymmetric shapes. Many ants need long times 
to reach the given distance. For large times there is a tendency for an exponential 
decay, but better statistics for t>3000 may show a more complex behaviour. If we 
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Figure 1. l o g ( n ( f ) )  against f .  n ( f ) :  number of ants having reached a distance 12 10 after 
t time steps. 
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Figure 2. log(n(f))  against t. n ( r ) :  number of ants having reached a distance r 3 9 0  after 
f time steps. 

assume an exponential law n( t )  ot e-", we find a = 0.0012. In the case of BF = 0.8 we 
found an apparent constant slope a between r = 10 and r = 100. Also in a triangular 
lattice there may be an exponential decay; here we find a = 0.0067. In calculations 
with BF = 0.6 the exponential decay is less clear; further examinations seem to be 
necessary. In no case did we find a behaviour in the form n ( t )  Cc t-". 

Figures 3 and 4 show the discrete Fourier transformations FT of the data presented 
in figures 1 and 2. In each diagram we find three curves: the real part (Re), the 
imaginary part (Im) of m and the FT belonging to autocorrelation function (1) (A). 
The curves show a very complex behaviour and not a simple 1/ f frequency dependence. 
If the distance r increases, the A curves reach zero earlier. This means that for greater 
distances, only lower frequencies play a significant part. 
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Figure 3. Real part (Re), imaginary part (Im) and Re2+Im2 (A) of discrete Fourier 
transformation against frequency for distance r = 10. 
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Figure 4. Real part (Re), imaginary part (Im) and Re2+Im2 (A) of discrete Fourier 
transformation against frequency for distance r = 90. 

In summary we have seen that the distribution of first passage times is quite complex 
for biased diffusion in random media. 
Special thanks are given to E Guyon and D Stauffer for suggesting this work. 
Note added in proof: Different simulations have been done by L de Arcangelis, J Koplick, S Redner and D 
Wilkinson (Preprint) and by S Roux, C Mitescu, E Charlaix and C Baudet (Preprint). 
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